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FOREWORD 

The purpose of this report is to present a description of the 

computational fluid dynamics capability of the General Interpolants 

Method (GIM) computer code. The work described in this report 

was performed by personnel of the Lockheed Missiles and Space 

Company, Huntsville Research and Engineering Center. It was 

supported, in part, by NASA-Langley Research Center under pur- 

chase order L53289A and L68133A. Inquiries concerning this re- 

port should be directed to James L. Hunt (NASA technical monitor, 

Hypersonic Aerodynamics Branch) or to: 

Lawrence W. Spradley 
Lockheed-Huntsville Research 

& Engineering Center 
4800 Bradford Drive 
Huntsville, AL 35807 

(205) 837-1800, extension 401 
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1. INTRODUCTION 

In recent years, extensive literature has appeared on the numerical 

integration of some form of the Navier-Stokes equations of fluid dynamics. 

The introduction of larger and faster computers has enabled investigators 

to experiment numerically with various approximate solution procedures 

for these complex equations. This development has proceeded along two 

different, but related, avenues: (1) mathematical solution of partial differ- 

ential equations, and (2) engineering computation of physical phenomena. 

Although item one is not ignored, we are primarily concerned here with 

engineering analysis for obtaining useful results in practice. Acceptance 

of unsteady techniques in conjunction with larger and faster computers is 

changing the philosophy of computational mechanics since it is now possible 

to begin thinking of a general prediction tool for computing real world prob- 

lems. 

The system of equations considered here are various subsets of the 

Navier -Stokes equations plus an appropriate energy equation. Lagrangian 

coordinates or mixed Eulerian-Lagrangian frames are not considered. The 

equations are cast in unsteady form to pose the problem as initial valued in 

time. With appropriate spatial boundary values, the equations can be inte- 

grated forward in time in a parabolic/hyperbolic sense. The use of the un- 

steady formulation has a number of advantages: (1) the transient portion of a 

flow can be obtained as well as a steady state; (2) the asymptotic approach 

to a steady flow proceeds in much the same manner as nature; (3) subsonic, 

transonic and supersonic flows can be calculated with same methodology; 

(4) multi-dimensional flows can be handled more conveniently; (5) with a 

proper form of the differential equations, integration can automatically 



proceed through shock waves or other discontinuities without undue compli- 

cation; and (6) computation of viscous flows with time-fluctuating turbulence 

can be performed more naturally. 

The art of computational mechanics is the construction of an appropriate 

numerical equivalent of the conservation equations since there is no systematic 

procedure which will yield the optimum approximation for a general system. 

There are at least two distinct ways to derive such approximation formulas. 

The first, or “grid II approach operates on the differential form of the equations 

by expanding the terms in a Taylor series and truncating it in some manner. 

The second approach, termed “cell” or “element” methods operate on the 

integral form of the equations and assumes a functional form for the varia- 

tion of the dependent variables over a local finite volume. In either approach, 

the concepts of a “consistent” approximation, an !‘accurate” calculation pro- 

cedure and a “stable” integration formula are all vital to obtaining solutions to 

the equations. 

The classical works use finite difference techniques (Ref. 1) but recently 

the concept of the finite element, borrowed from structural analysis (Ref. 2), 

has become increasingly popular. Scientists with extensive backgrounds in 

finite difference solutions defended their approach against the finite element 

advocates. Likewise the finite element proponents claimed that the other side 

did riot understand their new method. The resulting arguments have produced 

many papers and few solutions. An occasional attempt has even been made to 

relate the two approaches, but the schism still remained. It is the intention of 

this discussion to produce a consistent approach which clarifies the situation, 

and as it turns out, demonstrates that both approaches have merit and that each 

camp can learn a great deal from the other. 

This report introduces a new methodology for constructing numerical 

analogs of the partial differential equations of continuum mechanics. A gen- 

eral formulation is provided which permits classical finite element methods 

and many of the finite difference methods to be derived directly. The approach, 
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termed the General Interpolants Method (GIM), is new in the sense that it can 

combine the best features of finite element and finite difference methods. The 

technique allows complex geometries to be handled in the finite element manner 

and operates on the integral form of the conservation laws. Solutions can be 

generated implicitly with the finite element analogs or by explicit finite differ- 

ence analogs, which do not require a reduction of large systems of linear alge- 

braic equations (no matrix inverse). A quasi-variational procedure is used to 

introduce boundary conditions into the method and to provide a natural assembly 

sequence for combining the element equations into the full domain equations. 

The domain of interest is first discretized by appropriate subdivision into 

an assemblage of interconnected finite elements. A mesh generation is used in 

the GIM approach which incorporates general curvilinear coordinates, stretching 

transformations and bivariate blending to produce an automated mesh/element 

generation. Shape functions based on a set of generalized interpolants are then 

chosen to describe the behavior over each element. We then proceed, as in the 

Method of Weighted Residuals (Ref. 3) by multiplying the discretized equations by 

a set of weight functions and integrating over the volume of the element. A quasi- 

variational procedure is then used to construct the assembled system of equations 

from the element equations, and to introduce boundary conditions into the method. 

By choosing the weight functions equal to the shape functions, we reproduce via 

Galerkin the classical finite element nodal analogs. It is at this point that we 

introduce one of the important concepts of GIM: orthogonal weight/shape functions. 

By appropriately choosing the weight functions to be orthogonal to the shape func- 

tions, we can obtain explicit nodal analogs. Further, by a coice of arbitrary con- 

stants in the orthogonal weight functions, we can reproduce known finite difference 

nodal analogs, such as centered difference, upwind/downwind differences and the 

two-step MacCormack algorithm. As a result of this spatial discretization, we 

have reduced the partial differential equations to ordinary differential equations 

wi th “time” as the independent variable. Any forward marching algorithm such 

as Euler, Runge-Kutta or predictor-corrector can be used to advance the solu- 

tion profiles in time. 

In this report, we will use the unsteady equations of two-dimensional in- 

viscid fluid flow to illustrate the GIM approach. Extension of this development 
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to three space dimensions and to viscous flow equations has been accomplished 

but we use the simpler problem to present the basic principles of GIM more 

tractably. The following points summarize GIM and its advantages over pre- 

vious approaches. 

0 

GIM is a higher order procedure for constructing compu- 
tational analogs of the conservation laws of continuum 
mechanics. 

GIM is a total calculational procedure in that arbitrary 
geometries, expandable equation sets, different nodal 
analogs, general curvilinear coordinate systems and 
multi-constraint boundary values are handled. 

Non-orthogonal sets of weight/shape functions give rise 
to analogs which have generally been classified as finite 
element methods. 

Orthogonal sets of weight/shape functions give rise to 
explicit finite difference nodal analogs. 

A single analysis can be generated which selectively 
employs either of several finite element approaches 
or either of several finite difference techniques accord- 
ing to the wishes of the analyst. 

Finite Element discussions in, the literature have mentioned 
quasi-variational methods, but none have consistently applied 
these ideas to boundary conditions as we have in GIM. 

The classical finite element analogs, derived via Galerkin, 
are unconditionally unstable for solution of the strong con- 
servation form of the Euler equations for shock capturing. 
Several authors have presented formulations entitled Finite 
Element with automatic shock capturing, but no solutions 
are reported. We have found by numerical experiment, 
that the nodal analogs they derive are unstable. The only 
solutions presented make use of the theory of “weak solu- 
tions,” which destroys the strong conservation form of the 
equations. 

The GIM approach allows the flexibility and generality of 
finite element techniques to be effectively married with 
proven successful finite difference techniques to produce 
a superior higher order methodology. 
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2. METHOD DESCRIPTION 

2.1 EQUATION SETS AND THE QUASI-VARIATIONAL TECHNIQUE 

The partial differential equations governing the two-dimensional flow 

of an inviscid, nonconducting ideal gas can be written in the following popular 

form: 

= j-J-J= 0 ay (1) 

where x, y are spatial Cartesian coordinates, t is time, U is a column vector 

of dependent flow variables, and E, F, H are nonlinear functions of U. For 

example, 

where p = density, u = velocity component in x, v = velocity component in y, 

E = total energy per unit mass and P = pressure. 

This equation set, in conjunction with an equation of state P= P(p, E) 

and appropriate boundary values,formally defines the type of problem used 

here to describe GIM. 

This form of the equations is termed Strong Conservation Law or Di- 

vergence form. This form has been advantageous for finite difference pro- 

ponents because of the superior characteristics in the neighborhood of dis- 

continuities and steep gradients. It is also a convenient form for finite 

element analysis since the assembly procedure for collecting influence 

coefficients needs to be done only once. 
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GIM is developed in terms of equations of the form (1). Cartesian co- 

ordinates are used to write the equation sets and transformations are made 

numerically to relate a specific geometric region to this reference frame. 

Using Eq. (1) also allows the method to be formulated for multi-equation sets 

since the length of the column vectors is arbitrary. Thus additional equations 

can be added such as a third dimension, multi-specie reacting flow conservation 

laws and equations for multi-phase flows. Additional terms can also be added 

to this form to model viscous flows by including stress components, body forces, 

etc., to the E, F and H vectors. 

It is natural to view Eq. (1) as a time-dependent system. With proper 

initial values and a realistic time, this form indeed represents the transient 

behavior of the flow. Additional ways of viewing Eq. (1) are also possible. With 

arbitrary initial conditions, the time t can be considered only as a relaxation 

coordinate such that Eq. (1) represents an asymptotic steady state form. 

We may also view I’t” as a spatial marching coordinate such that Eq. (1) 

represents a steady state hyperbolic system. Although a spatial marching varia- 

tion of GIM is not precluded, we consider here only the unsteady or relaxation 

viewpoint of Eq. (1). 

In many problems in mathematics and physics, a variational principle 

exists in which a stationary value of the principal function yields the governing 

equations. Perhaps the most complex, yet familiar, example is that of the maxi- 

mization of entropy for closed systems leading to the equations governing chem- 

ical equilibrium. 

There are few examples of field solutions obtainable through variational 

principles; the most notable in fluid mechanics is restricted to potential flow. 

There is no known principle that generates the primitive equations of motion 

for fluid mechanics. 

In spite of the absence of a known principle we may, however, still take 

advantage of variational techniques. Let us assume a functional exists: 
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whose extremum yields the primitive equation of motion. That is 

where 

as 

-I?3 
aau 

= g+ a(ptpu2) I wd 
ax 

at 

CT- 

+7 
apv a (Puv) 

-E 
= at + --SE- + a (P+apyy2) 

as = aPE+ 
at 

8 (PUE t up) + 8 (PVE t vp) 
ax ay 

At the extremum, therefore, the coefficient of the variations must vanish, 

thereby satisfying the equations of motion. The above statements are described 

as a quasi-variational technique and where, in the absence of the variational 

principle, provide a rigorous academic point of departure for further develop- 

ments. This type of idea is used in the GIM development to form an assembly 

procedure and to describe multi-constraint boundary values. 



2.2 GEOMETRIC TREATMENT 

The domain of interest is considered to be geometrically arbitrary in that 

any shape is represented as a bivariate blend of regular subdomains. Figure 

2-1 shows an example of a full geometric domain in which flow is to be computed. 

This domain is subdivided into four regions as shown. In general this division 

is made such that analytical functions describe the shape of each side but it can, 

of course, be made by point specification and piecewise linear sides. Attention 

can then be focused on each region with global coordinates (x, y) and local region 

coordinates (c’, TJ’). The regions are blended together at the junctions to provide 

the continuous full domain geometry. 

We then proceed by considering each region separately as depicted in 

Fig. 2-2. Gordon and Hall (Ref. 5) show that the general relationship between 

physical space and local curvilinear coordinates is given by the following 

transformation: 

R(&rl’) = (1 -S’)R(O,q’) t f’R(l,$) t (1 -$)R(c’,O)t r)‘R(e’ , 1) 

- (1 -c’)(l -q’) Rl - (1 -c’)$R2 -69~ R3 - c’(l-$)R4 (3) 

where 

x(i+?‘) 
R (~‘~0 = 

y(ip-t) 

is a two-component vector function and c’,t)’ range from 0 to 1 along the con- 

tour of the region. The quantities Rl, R2, R3, R4 are the x,y coordinates of 

the corners of the region and R (O,d), R(l,r~‘), R(c’, 0), R(c’, 1) are geometric 

functions which describe the shape of the sides of the region (Fig. 2-2). To 

describe the geometry of a region thus requires input of four (x, y) coordinate 

pairs and four sets of functions to describe the sides. Figure 2-4 lists the 

library currently contained in the GIM code. 



Fig.2-2 - Flow Domain Example Subdivided into Regions 

Y 

, 

X 

Fig. 2-2 - Global and Local Coordinate Systems for a Region 

(l,l) 
3 

2 

Fig. 2-3 - Element Breakdown for a Region 
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l HEXAHEDRAL BUILDING BLOCKS 

l EDGES (Combinations of up to five types) 

Linear segment 

Circular arc 

Conic (elliptical, parabolic, hyperbolic) arc 

Helical arc 

Sinusoidal segment 

l SURFACES (Bounded by above edges) 

Flat plate 

Cylindrical surface 

Edge of Revolution 

0 REGION OF INTEREST DESCRIBED BY UNLIMITED 
NUMBER OF HEXAHEDRAL BUILDING BLOCKS 

Fig. 2-4 - Three-Dimensional Geometry Package 
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____ _...__. _._..__ - - _...._..~ ~- 

After determining the coordinates and geometric functions, we can then 

transform to (5’) r11 ) space and develop the equations in local coordinates. The 

next step is to subdivide each region into an assemblage of interconnected ele- 

ments as depicted in Fig. 2-3. This is accomplished by simply specifying the 

number of node points in each direction. Each element is developed in its own 

local coordinates(5, n) in the same manner as the full domain was transformed 

into regions. All types of stretching transformations are possible with Eq. (3) so 

that irregular grid patterns can be used to enhance resolution. The elements are 

considered isoparametric in that the same functions will be used to approximate 

the flow variables. and the element geometry. For example, if linear interpolants 

are used for velocity, pressure, etc., then a typical element shown in Fig. 2-3 

will have linear sides. 

Within each element, any function, Q, will be described by a set of inter- 

polants, S, such that 

Q (5 ,r7) = SiCS,~) Q (~i.'li) (4) 

= Si Q. 
1 

summed i= 1,k 

where Qi is the function at the node points of the element and k is the number 

of nodes on the element. The derivatives of any function Q in (5 ,q) space is 

then 

F=f&Qi F=+Qi aa as. summed i = 1, k (5) 

since Qi is a point function. 

In order to relate such derivatives back to physical (x,y) space, we use 

the following relation from the calculus. 
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aQ 
ar, 

where [J] is the Jacobian matrix of the transformation, defined as 

[J] = 

This is easily obtained by differentiating Eq. (3). The integration over an 

element also requires the area transformation 

dxdy = A, dcdq (8) 

(6) 

(7) 

where A J is the determinant of the Jacobian matrix [ .I]. 

We now have all of the geometric information to develop the discretized 

conservation laws for an element. 

2.3 DISCRETIZED EQUATIONS AND ASSEMBLY 

With the coordinates and geometric shape functions now defined for 

each element, we proceed to discretize the differential equations for an in- 

dividual element. The procedure follows that of the Method of Weighted 

Residuals (Ref. 3) in that we require the weighted integral of the differential 

equations to be zero over the domain, R. 

gtH)dxdy= WDdA = 0 (9) 
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where W is an arbitrary weighting function. Equation (9) must be satisfied 

over the domain R and can be written as a summation of integrals over each 

element 

I = 
u- 

WDdA 
e 

Re 

(10) 

Equation (10) then represents the point of departure for obtaining the discrete 

conservation equations. The integrals over each element Re are developed 

by applying the general interpolant shape function, S (Eq. (4)) to the differential 

equation (Eq. (1)). For simplicity we will use the same shape functions for 

each flow variable although this is not a restriction on the approach. 

The dependent variables are thus assumed to be given by the following 

relations over an element 

iJ = SiJ 
J j 

E = S.E. 
J J 

F = S.F. H = S.H. 
J J J J 

(11) 

where summation j = 1, k is implied, k is the number of nodes on an element 
ati 

(k= 4 in Fig. 2-3), and 6 = at . 

For any weight function Wi, we put Eq. (11) into Eq. (10) for a single 

element to yield 

Ie =// Wi [Sj~jt ~ Ej t ~ Fj tSjHj]dxdy 

Y x 

(12) 

Now we note that cj Ej, Fj, Hj are point functions dependent only on time, so 

that we evaluate the integrals in terms of known functions, Wi, S., J 

Let the following element matrices be defined. 
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[“~j 1 = // Wi Sj dx dy 

YX 

[CFj] =I- Wi 2 dxdy 

Y x 

Equation (12) then becomes 

I = e [A~jI(~j SHj) t [~~j] Ej t [C~j] Fj 

(13) 

(14) 

(summed j = 1, k) 

Equation (14) i’s a set of k ordinary differential equations for an ele- 

ment e. The integrals (Eq. (13)) can best be evaluated by invoking the (6, n) 

transformations (Eqs. (6)-(8)) to yield 

1 1 

[BTj] ;/i’ 

0 0 

[dfj] =/i’ 

0 0 

WiSj A, dE drl 

dS dr) 

W. 
as- ax 3 ax 

1 +- rlZFaf%i de dr) 

(15) 

The discretized element equations are thus given by Eq. (14) with the 

coefficient matrices given by the geometric integrals Eq. (15). Note that in 

Eq. (14) the j index is summed and the i index counts the node number of 

the equation. 
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Since the choice of W is arbitrary, the integral must be stationary for 

variations in W. The so-called quasi-variational approach determines the 

conditions under which the integral is stationary. That is to say that if 

WI = W+6Wthen 

61 = 5 $awzdxdy = 0 

e=l R 
e 

Now let 

W = Wj (5,tl) tij or 

6W = wj at3. 
J 

so that 

61 = * I- Wj ndxdy 6U. - 0 Jl 
e 

The for 61 to be stationary, the sum of the coefficients of 6Uj must be 

zero. This provides a rationale for the classical assembly procedure of MWR 

derived finite element schemes. 

In mathematics, this can be written as 

bmn] = G’rni FFj] 6nj 

where 

1 if node i of element e coincides 
6 

mi 
= with node m of the region R 

0 otherwise 

(16) 

and similarly for the B, C matrices. The rationale for doing this is directly 

derivable from the quasi-variational procedure. 
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A simple example of the assembly procedure 

four element domain. 

L 

is given for the following 

Node 1 of the full domain contains only element matrices from element u 

while node 2 of the full domain contains a sum of element matrix components 

from elements 0 and @ . Node 5 of the full domain contains a sum of 

matrix components from all four adjacent elements. 

With the nomenclature of Eq. (15), the full domain equations are 

[*mn ] (fin +Hn)+[Bmn]En+[C-] Fn = 0 (17) 

Note again that in Eq. ( 17), the n index is summed over the number of nodes 

and the m index counts equations for each node. In addition, we must recall 

that 6, E, F, H are column vectors themselves. For two-dimensional flow, 

Eq. (17) then represents 4k equations for k nodes in a domain, R. The spatial 

analogs and geometric transformations are all contained in the coefficient 

matrices. Thus; Eq. (17) is a system of ordinary differential equations which, 

with suitable initial data, can be integrated as an initial value problem. 

2.4 NODAL ANALOGS 

At this point, Eq. (17) is general in that the geometric functions are 

arbitrary and the flow variable shape functions and weight functions are 

arbitrary. To this point the development is similar to the general Method 

of Weighted Residuals (MWR) (Ref. 3) with the geometric transformations 

built into the integrals. Readers familiar with MWR will realize that closed 
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form evaluation of the integrals (Eq. (15)) is impossible in general due to 

presence of the Jacobian inverse components for an arbitrary transformation. 

In the GIM code we evaluate all element integrals using Gaussian quadrature 

to maintain generality of geometry. 

If we choose the weight functions W to be identical to the shape functions 

S, then the Eqs. (17) represent the Galerkin approach to finite element nodal 

analogs. Inspection of these equations will reveal that, in general, the spatial 
. 

nodal analogs are implicit in that the unsteady derivatives U are summed over 

all connecting node points. In this work we will refer these “finite ele,merit?’ 

equations as implicit nodal analogs. Any other classical choice of weight func- 

tions are possible at this point in the analysis, such as collocation, least squares, 

etc. 

We now turn to one of the major developments of the GIM analysis; the 

generation of explicit nodal analogs from the MWR point of departure. In 

this work we will refer to explicit analogs as “finite difference” equations 

not to preclude the fact that implicit finite difference analogs are also possible. 

To consider explicit expressions we turn to Eq. (17) and note that the [A,] 

matrix is the key to rendering the algorithms explicit. If the [ATj] element 

matrices were made diagonal then the [A,] full domain matrix will be dia- 

gonal. This would reduce Eq. (17) to an explicit expression for the unsteady 

derivatives, 6. 

To accomplish this goal, we choose the weight functions W to be orthogonal 

to the shape functions, S. 

[A:~] =/t/l WjSiAJdcdu= 0 ifj 

0 0 

(18) 
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Equations (17) then become 

tim = - + 
mm 

[B-]E~ t[C-] F n 

where a mm are the diagonal (non-zero) components of [A-]. 

This choice of weight functions does not reproduce the “classicaPl finite 

element form but rather an explicit nodal analog which we may view as a finite 

difference type of analog. The [Bmn] and [Cm,] matrices now resemble “de- 

rivative takers” in that g is approximated by 

N 
aE 1 
ax z- a c 

mmn=l 
Bmn En 

m 

The specific type of finite difference analog which is produced is a function 

of the element shape functions, S, and the orthogonal weight functions, W. 

To clarify this situation and to show that such expressions do yield proven 

finite difference formulas, the following simple example is given. 

Consider the following four -element, nine-node rectangular region: 

3 6 9 
1 

AY 2 t 
2 

f 0 50 
8 

0 1 0 4 

1 4 7 
I- Ax -1 

Full Domain 
Numbering Sys tern 

‘1+ 3 

I40 
1 2 

Individual Element 
Numbering System 
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The simplest shape functions are the linear interpolants 

s = 

(l-5w -m 
s (1 -?I) 
srl 
(1 -w? 

I (19) 

Using these shape functions in the orthogonality condition, Eq. (18), we find 

the following weight functions. 

a1 (2/3 - 4) v/3 - r~) 

w= l 
o2 ( l/3 - e, (Z/3 - rl) 

Ax Ay r I a,(l/3-0(1/3-v) 

k a4 (~3 - 4) (~3 - rl) J a4(2/3 - 4) (l/3 -59 

(20) 

where the oi are arbitrary constants. 

Putting these S and W functions into the integral coefficients, Eq. (15), 

and carrying out the integration analytically, we get the following element 

matrices. 

[AFj] = $ (21) 
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-a 

! 

1 

rBTjl = &i 
OL2 
o 

0 

-a 

i 

1 

0 

0 

“4 

a1 
-a 2 

0 

0 

0 

“2 

-a 3 

0 

0 0 

0 0 

! 

a3 -“3 

-“4 “4 

0 - al 
-a 0 2 

a3 O 

0 -a 4 

(21) 

Now we can assemble the coefficient matrices for the center node (Node 5) 

and examine the resulting analog. Applying the assembly technique, Eq. (16), 

the resulting analog for node 5 is the following: 

(a 1 -a +a 2 3 --a41 [fJ5 + H5] 

i 
(a 

t 
1-a4)E8 + (a3ta4-al -a2)E5+ (a2--a3)E2 

L Ax 1 
[ (a 

t 
1-a2)F6 t (-alta2ta3-a4)F5+(a4-a3)F4 

AY 

= 0 (22) 

Equation (22) is the general finite difference type of analog resulting from the 

orthogonality condition. Since the ai are arbitrary constants we can choose 

them to give a choice of actual nodal analog. Let 

“I = a3 = 1 
a2 = “4 = -’ 
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Equation (22) then becomes 

c5 t H5 t 
E8-E2 F6.-F4 = o 

2Ax + 2Ay (23) 

Equation (23) is readily recognized as a space centered scheme which 

is unconditionally unstable for an explicit single step time integration. The 

important point is, however, that it is a finite difference scheme. The con- 

clusion is that finite difference schemes (explicit nodal analogs) arise from 

orthogonal weight and shape function sets while classical finite element 

schemes (implicit nodal analogs) result from non-orthogonal choices. 

By selecting the ai in various manners other finite difference schemes 

may be generated. For example let 

a l=ltk; “3=1-p; a2=a4=-1 

then 

u5 t 
E8 - E2 F6-F4 

2Ax +--- 
+ PAX 

(E8 -2E5+E2) (F6 -2F5tF4) 

DAY 4 
Ax2 

ty 2 = 0 (24) 
AY 

which is just Eq. (23) with some psuedo-viscous terms added. 

A more pertinent example is a two-step method in which we choose for 

the first step a = a = a = 0; a 
2 3 4 1 

= 1 while for the second step a1 = a2 = a4 

= 0; a3 = 1. We then have for the first (prediction step) 

‘5 + Ax + 
E8-E5 F6-F5 =. 

AY 

while for the second step using provisional values generated above 

E5-E2 
‘5+ Ax -I- 

F5-F4 =. 
AY 

(25a 1 

(25b) 
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. Equations (25) are the MacCormack technique (Ref. 6) which has become 

very popular in recent years. Further it should be pointed out that different 

assemblies may be used for different equations yielding combination schemes 

of forward, backward and centered which have been successfully used in prob- 

lems involving meteorological phenomena and convection analyses.. 

Some (perhaps not all) finite difference techniques can therefore be gen- 

erated from the finite element point of departure. These schemes are par- 

ticularly attractive for large scale problems where the implicit nature of the 

non-orthogonal weighting functions create an insurmountable obstacle to the 

successful pursuit of the solution. Another important feature is that a great 

deal is known about stability characteristics of some of the explicit schemes. 

An observation which is felt to be of paramount importance is that it is not 

necessary to make the choice of schemes a priori. Rather a general computer 

program can be written in which the user chooses his assembly techniques upon 

input rather than at inception of the coding effort. Thus, a nonorthogonal choice 

may be made if the number of unknowns is small while an orthogonal choice can 

be made if the number of unknowns is large. This is a tendency then toward a 

very general finite difference/finite element fluid mechanics computer code. 

2.5 BOUNDARY CONDITION TREATMENT 

The boundary condition treatment in the GIM code is based on a quasi- 

variational technique. The discussion here will briefly outline the procedure. 

In this discussion we will assume that any number of constraints are 

acting simultaneously. We generalize the constraint statement to read: 

‘i = aikci+@- 1 
= 0; k=l, . . . . K; i=l,..., I 

There are then K-I independent motions. Rewritting Eq. (26) yields 

K-I K 

c 
a 

ik Uk+ E a ip U,+P. = 0 
1 

k=l I =K-I+1 

(27) 
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where the I motions are considered dependent while the k subscript motions 

are assumed independent. In matrix form 

(28) 

where [z?] is a square (I’xI) matrix. The dependent motions are found ex- 

plic itly from: 

The variational statement is 

(29) 

(30) 

After much algebraic manipulation we get the following expression for 

the independent motions. 

where 

A 
Uk = - [;] @ -l] ([=! -l] p + tik,l 

[D] = [I]+ [L] [d - ‘] [g - ‘1 [L] 

(31) 

the tilde (-) indicates transpose and the hat (A) indicates new values now cor- 

rected for boundary constraints. Equation (31) is used to compute the inde- 

pendent motions. 

As an example, consider the case of inviscid wall tangency 

q.j$ = nxL+ny;+nZW = 0 (32) 

where % is the unit normal to the wall. 
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The constraint coefficients are then 

[L) = [nx ny]; [k ] = nZ; P = 0 

From Eqs. (29) and (31) we get the following equations for the following equa- 

tions for the unsteady velocity derivatives. 

$k 
3 

i 
= ti;- N; c Ni tii (33) 

j=l 

where the N?, are unit normal components at the wall point i (determined from 

geometry). Inspection will show that this maintains flow tangency if the initial 

t = 0 data are tangent to the wall. 

Consider now the multiple constraint situation (internal corner): 

where the flow is constrained to be tangent to two surfaces hence must flow 

parallel to the corner. The equations of constraint are: 

. . . 
mix+ vnly+ wnls = 0 

. . . 
Wzx + Vnzy + wnZz = 0 

so that 

(34) 

(35) 
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Again Eqs. (29) and (31) give the appropriate expression for corner flow: 

3 
;k 

i = T; c Ti tij 1 (36) 
j=l 

where i is the nodal point nunber and k = 1,2,3 for each velocity component. 

The Tf are the unit tangent vector components for the corner (determined from 

the geometry). 

The following are the type of nodal point conditions which the GIM code 

can treat. 

Type 
0 

1 

9 

Condition 

Known or fixed conditions 

Nodes having the same value 
as another 

Stagnation point 

Internal corner flow 

Wall tangency (slip) 

Not currently used 

Not currently used 

Not currently used 

Wall point determined 
from one-sided differences 

Interior flow points . 

The treatment of each type is in terms of the unsteady derivatives, and 

are given by the following: 

Type 0 

This is a boundary node at which all flow variables are specified such 

as an upstream inflow to a duct. Mathematically, this condition is 
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fT i = 0 for all nodes i to be specified 

This requires, of course, that the U vector itself be properly initialized to 

the inflow conditions. 

Inflow 
Type 0 --I?-< - 

Type 1 

This is a boundary condition for points which are common to more than 

one element such as: 
8 

7 

1,2,3,4 Type 1 

Nodes 1, 2, 3 and 4 are actually the same point but four values may be deter- 

mined from flow in each of four elements. Mathematically, this is treated 

as follows: 

N 
tii = + c 5 

J 
i= l,N 

j=l 

Type 2 

A type 2 node is a stagnation point for which 

(37) 

ui 
= 0 for components of Ui which 

are flow velocities 
-- 
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Other components of U such as density and energy are integrated using the 

nadal ana log s . 

Type 2 

K 

Type 3 

Flow in a corner is forced to flow along the corner by imposing condi- 

tions on the components of 6 which are velocity variables 

(38) 
j= 1 

where i is the nodal point number and k= 1,2,3 for each velocity component. 

The TF are the tangent vector components for the corner (determined from 

the geometry and the hat (“) indicates corrected values). 

Type 4 
Type 3 

Inviscid flow tangency or free slip conditions are specified by imposing 

the following conditions on the velocity component of 6: 

;k.k 3 
i = ui - N;xN; 6: (39) 

j =l 
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where the Nr are the unit normal components at the wall point i (determined 

from geometry and the hat (^) indicates corrected values). 

This approach maintains tangency if the initial t = 0 data are tangent to the 

wall. 

8 Type 

Type 8 boundary nodes are those in which flow is allowed to exit the 

domain at an unspecified rate. Such a condition is the downstream wall in 

a supersonic flow where the wall values are determined from upstream 

(backward) differences. Wall points of this type are computed from one- 

sided differences determined by a proper choice of the ai to yield one-sided 

nodal analogs at the boundaries. 

_ ~I-~“‘.” 

9 Type 

These are interior points in the flow domain which are to be unrestricted 

and determined entirely from the nodal analog of the differential equations. 

-I_ 
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2.6 VISCOUS FORMULATION AND STABILITY 

The full set of differential equations solved by the GIM code is shown in 

Fig. 2-5. These will be referred to as the Navier-Stokes equations, although 

they include continuity and energy conservation as well as momentum. For 

inviscid flow calculations without shock waves, the u and 7 terms are set to 

zero to produce the Euler set. Figure 2-6 lists the viscous terms with coeffi- 

cients, p, 1, k for the first and second coefficients of viscosity and the thermal 

conductivity, respectively. These are specified by the user as “laminar” con- 

s tants. 

For reasons of numerical stability and capture of strong shock waves, 

additional components of the diffusion coefficients are added automatically by 

the GIM code. Figure 2-7 is a list of currently used Numerical Diffusion 

Cancellation (NDC) coefficients. These are added to the real diffusion coeffi- 

c ients. The purpose of these NDC coefficients is to cancel low order trunca- 

tion error terms which arise in the numerics. A forthcoming paper by Spradley 

will present the basic principles of the NDC technique in more detail. 

The differential equations are solved in strong conservation or divergence 

law form. The solution is started at some time t where the entire flow field 

mesh is specified. The unsteady or relaxation of the equations is then done 

using the user-specified nodal analogs. At this time, the pressure is computed 

from the ideal gas law for a single component gas. The code is being modified 

to include multi-gas capability and other additions. 

Stability of the unsteady solution is maintained through addition of the 

viscous cancellation terms. The time step is limited by the classical inviscid 

CFL criterion or the diffusion time criteria, whichever is smaller. Adding 

too much artificial viscosity smears the solution and also reduces the allowable 

time step for stability. The GIM code adds just enough viscosity to balance the 

low order truncation errors. 

29 



aU aE aF aG at+ g---I-~ = 0 
w 

P 
Pu 

u = pv 

i: 

PW 
E 

E = 

- UT,- wxy - ~7~~ - 

r 
pv - CJ Y 
Pvu - 7xy 

F = Pv2t P - 7yy 

pvw-7 1 YZ 
(PE+P)v - ~7~~ - vryy - w 7yz - 

G = 

(PE+P)w - u7,, - my, - wrzz - q, 
1 

_ . 

Fig. 2-5 - Three-Dimensional Cartesian Navier-Stokes Conservation Laws 
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7YY 
= 2P$+7*? 

7 zz = 2CL$+V*T 

7 
a~, av 

XY 7 p(ay ax) 

7 xz = /L&g) 

7YZ 
= p&g, 

9, 
= kg 

qY 
= kg 

9, 
= ks 

Fig. 2-6 - Viscous Terms in GIM Code 
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rz +v2 t c2) * At 

ay 

u 
Z 
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ay 

P d= E2P2 5% (u2tv2tw2) 

IJ- = Prealt Pd 

A = Cl/A C1’C2 = O(1) 

k = c2p E:p2 = O(1) 

Fig. 2-7 - Example of the Stability Coefficients in GIM Code 
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2.7 THE GIM CODE 

The GIM code is divided into four modules: (1) mesh generation; (2) nodal 

analog assembly; (3) .unsteady integration; and (4) data display. The mesh gen- 

eration module accepts boundary geometry data, curve or line formula flags, 

and number of cuts in each coordinate direction. A set of general curvilinear 

coordinate maps is then used to subdivide each region into finite elements. 

Each region which is input is processed and then blended. The output is a set 

of coordinates for each element along with the element coefficient matrices. 

The nodal analog assembly module takes the mesh data from a stored external 

file and performs, via quasi-variational procedure, the assembly of the element 

equations into the full domain equations. At this point, the dynamic storage 

allocation is set up so that the unsteady integration module can integrate with 

virtually unlimited problem size. 

The unsteady integration module performs the actual computation of the 

flow by employing the boundary conditions selected by the user. The nodal 

analog at this point is arbitrary and any one of a number of schemes can be 

selected depending on the problem being analyzed. The solution is marched 

forward in time for a specified number of steps or until a steady state is 

reached. The data display module reads the solution profiles from external 

storage (drum, tape) and prints, plots and maps the flow parameters. Figure 

2-8 is a block diagram illustrating the modular construction of the GIM code. 

Figure 2-q is a summary of the computer utilization of the code. 

A study is currently underway to determine the feasibility and practi- 

cality of implementing the GIM code on a CDC STAR computer system. The 

pipelining features of such a machine appear to be well suited to the GIM 

formulation since the numerical analogs are written as vector products and 

matrix-vector products. The current STAR features also appear to be best 

for explicit methods rather than implicit schemes. The feasibility study is 

being supported by the NASA-Langley Research Center. 
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Fig. 2-8 - GIM Computer Code Structure 

0 OPERATIONAL ON CDC 7600, UNIVAC 1100 SERIES 

l DYNAMIC STORAGE ALLOCATION 

0 7600 CORE REQUIREMENTS 

l lOOK SCM 

l 50K8 LCM (Nominal) 

l 9 External Files 

l EXECUTION TIMES (7600) 
-4 

l Inviscid 4 x 10 set/node - Iter 
-4 

l Viscous 6 x 10 set/node - Iter 

l Example - 5000 nodes, 300 Iter 

l Inviscid 10 min CP 

0 Viscous 15 min CP 

Fig. 2-9 - Computer Utilization Summary 
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3. DEMONSTRATION PROBLEMS 

Seven sample cases were selected for presentation in this technical 

brief because these cases illustrate the utility of the methods and also reveal 

some interesting results for relatively complex flows. The equations are the 

same for all of the problems, but the geometry and boundary conditions are 

different. The equations are the Euler equations plus certain viscous terms 

for an ideal gas written in strong conservative or divergence form. This 

form permits the use of “shock capturing” algorithms rather than “shock 

fitting” algorithms. The MacCormack scheme is used in the computations 

for illustrative purposes. 

3.1 TWO-DIMENSIONAL TRANSONIC NOZZLE 

This case consists of the single phase two-dimensional transonic flow 

in a converging-diverging nozzle with a finite area inlet and a 15 deg exit using 

air as the fluid. The upstream boundary condition consists of specified Mach 

number, density and pressure along a grid arc. Flow tangency is prescribed 

along the centerline and upper wall. The flow will thus be subsonic upstream 

of the throat, then expand to supersonic conditions in the divergent section of 

the region. Figure 3-l shows the problem geometry and mesh arrangement 

used in the GIM computation. Quadrilateral elements are used and the method 

selected is the two-step MacCormack scheme. Figure 3-2 shows the steady 

state flow vectors on the physical mesh. The length of the arrow gives relative 

magnitude of the velocity. Figure 3-3 is a computer generated plot of the steady 

state Mach contours in the nozzle. These values have been compared to meas- 

ured profiles (Ref. 7) for this configuration for the sonic line. 
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Fig. 3-3 - Mach Number Contou,rs for Transonic Nozzle Case 
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3.2 TWO-DIMENSIONAL SHOCK CAPTURING 

This case consists of the supersonic flow in a two-dimensional con- 

verging nozzle section to illustrate the “shock capturing” mode of the method. 

Figure 3-4 shows the mesh and geometry for the problem. The upstream 

boundary condition is a specified Mach number = 4, with tangency being en- 

forced on the centerline and the upper wall. Steady state Mach number con- 

tours are plotted in Fig. 3-5 and compared to a previous shock capturing 

forward marching solution. The MacCormack method was selected for use 

in GIM since the previous shock capturing technique (Ref. 8) used this algo- 

rithm. The figure shows the centerline Mach number versus axial distance 

plotted as the solid line and triangles. The GIM calculations are shown by 

the triangles and captures the shock well with the usual amounts of smearing 

that occur with this approach. The upper wall profile is plotted as dashed 

lines and circles. Comparison with the previous MacCormack solutions is 

seen to be good. The previous SCT solutions were generated via a supersonic 

forward marching code, while the GIM results are generated with an unsteady 

relaxation code. 

3.3 INTERNAL BALLISTICS SIMULATION 

This problem consists of an internal ballistics computation. The real 

propellant burning processes and grain regression were not simulated, but 

rather a model was used with wall mass injection at a specified rate. The 

sketch at the bottom of Fig. 3-6 illustrates the model. A solid wall was used 

as the left-most boundary, with an injection distribution from the “top” boundary 

and flow tangency along the centerline. Upper wall and centerline Mach number 

contours are plotted at steady state versus axial distance. The flow is seen to 

be basically one-dimensional in the straight section of the region. The wall 

Mach number then rapidly decreases as the conical section.is approached, 

and then expands again up to approximately 1.35. A sharp decrease is then 

experienced as the flow tries to slow down through a relatively flat section 

of the “nozzle ‘I . Rapid expansion through the conical section is then the final 

regime of flow. At this time, there are no data or previous computation of 
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this type to bc used for comparison, but the solution appears to be physically 

correct. 

3.4 THREE-DIMENSIONAL SUPERSONIC FLOW 

Next we consider three-dimensional inviscid flow in a square nozzle as 

shown in Fig. 3-7. ‘The in-flow Mach number is 2.94 (y = 1.4) at the “entrance” 

of the nozzle. The first 10 X0 consists of an expansion region with the final 

10 X0 being a constant area section. The problem thus consists of a supersonic 

expansion-recompression with two intersecting shock waves as depicted in 

Fig. 3-7. This problem has been solved previously by personnel in the Advanced 

Technology Laboratory (Ref. 9) and at Lockheed-Huntsville. Both of these solu- 

tions utilize a supersonic forward marching technique with a relatively fine mesh 

(21 x 18 x several hundred marching steps). We have computed this problem 

using a two-step MacCormack algorithm with the unsteady GIM code with an 

extremely coarse mesh (11 x 11 x 41). This required 540 time steps to reach 

steady state from a “cold” start, i.e., no information about the flow structure. 

The very coarse grid was used for this case to: (1) check out and demon- 

strate the basic three-dimensional GIM code without an excessive amount of 

computer time; and (2) to test the stability of the scheme for a very coarse grid. 

The GIM solution is shown in Fig. 3-8 and compared with the ATL solution. Shown 

are plots of pressure versus axial distance at the upper and lower walls in the 

symmetry plane of the nozzle (see Fig. 3-7). The calculations show excellent 

agreement in the expansion region but deviate considerably in the shockwave 

region. They do, however, exhibit the proper behavior with the quantitative dis- 

agreement due possibly to the very coarse grid in the GIM solution or a compu- 

tation problem with the ATL solution. 

Figure 3-9 is a contour map of pressure in the x-y plane at the outer 

wall (z = 2.0) of the nozzle. The plot shows the shock wave and reflection 

clearly even though it is smeared considerably by the crude grid. This case 

is shown to demonstrate the correctness and applicability of the GIM approach 

to complex fluid dynamic computations. Refinement of the solution is now a 

matter of grid size and computer time. 
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3.5 THREE-DIMENSIONAL TRANSONIC FLOW 

This problem involves the computation of three-dimensional flow in a 

spinning plug nozzle (SPN). The spinning plug nozzle consists of a tubular 

section which necks down to a smaller tubular section, as shown in Fig. 3-10. 

A plug is inserted into the neck-down region to form a three-dimensional 

convergent-divergent nozzle. The plug is symmetric about its own centerline 

but may be deflected from the centerline of the tubular portion, resulting in a 

nonsymmetric flow field. The flow includes subsonic, transonic, and supersonic 

regimes. 

The flow field was computed with the GIM code using 11,628 nodes. The 

results of the computation are presented in Figs. 3- 11 and 3-12. These results 

were used in a contractual study conducted by Lockheed for the U.S. Army 

Missile Research & Development Command (MIRADCOM). 

Figure 3-11 shows the Mach number contours at steady state at the upper 

and lower walls of the configuration as shown in Fig. 3-10. Figure 3-12 is the 

corresponding pressure contours. At present there are no data to compare 

with for this configuration, but the results appear to be physically real. Com- 

parison will be made when the data become available. 

3.6 TWO-DIMENSIONAL SHEAR FLOWS 

The flow field analyzed involved mixing the exhaust from a two-dimensional 

Scramjet afterbody nozzle with freestream. The problem configuration and the 

flow properties of the two flow streams are shown in Fig. 3-13. Both flow 

streams have the same value for the ratio of specific heats (y = 1.27). This 

problem was solved under contract from NASA-Langley Research Center. 

The grid used in GIM computation is shown in Fig. 3-14. Quadrilateral 

elements were used with a two-step MacCormack-type of analog. Solutions 

were obtained at steady state by relaxation of the unsteady equations. Figures 

3-15 and 3-16 are contour maps of pressure and Mach numb.er, respectively, 
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Fig. 3-16 - Mach Number Contours for Two-Dimensional Shear Flow Case 
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at this steady state. Figures 3-17 through 3-19 are plots of the GIM solution 

compared to the Seagull code solution (Ref. 10). Figure 3-17 shows vertical 

pressure distributions through the shear layer at three axial stations down- 

stream of the initial mixing zone. Good agreement is seen except at the upper 

wall for the “close-in” stations. Figure 3-18 is the corresponding Mach number 

plots. 

The upper wall pressure distribution is plotted in Fig. 3-19 and compared 

to the Seagull code and the Lockheed Method of Characteristics (MOC) code. 

Agreement is excellent except near X = 3 X0 where the GIM results are apparently 

low. This is due to the GIM code treatment of sharp corners. Seagull and MOC 

use a Prandtl-Meyer type expansion on all sharp corners while the GIM code 

solves only the differential equations. 

Aside from these explainable discrepancies, the GIM code results com- 

pare favorably with the Seagull inviscid solution. The shock, although smeared 

by the GIM code, is located in approximately the same place in both analyses and 

the effects of the shear layer are apparent in the GIM code results. 

3.7 THREE-DIMENSIONAL SHEAR FLOWS 

A three-dimensional shear layer, resulting from the interaction of a 

nozzle exhaust stream with the free stream, both beneath and beside the nozzle, 

was computed using the GIM code. The configuration, shown in Fig. 3-20 con- 

sists of a rectangular nozzle suspended below a body or wing. 

Referring to Fig. 3-20, the nozzle has a sharp 20 deg upward turn at 

X= 0, a sharp 6 deg turn downward at X=X0, and a sharp 6 deg turn outward 

along the dashed line located on the sidewall. The rectangular nozzle exit 

plane is inclined 30 deg from vertical. The body has a sharp 20 deg turn 

upward at X=X,. 

The problem was analyzed in three parts: (1) the nozzle; (2) the external 

flow upstream of the nozzle exit, and (3) the entire flow downstream of the exit 
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- plane. The nozzle flow field, which is three-dimensional, was computed using 

the GIM code. It was computed using 2160 nodes and required 570 iterations 

to relax to the steady solution. The external flow was computed using a Prandtl- 

Meyer expansion at the 20 deg sharp turn. The nozzle exit plane conditions and 

the freestream expansion were used as input boundary conditions for the down- 

stream shear layer region. 

The shear layer region was analyzed using 7094 nodes and converged in 

260 iterations. A single grid surface is shown in Fig. 3-21 to illustrate the 

grid density and alignment used in the analysis. The results of the analysis 

are presented in Figs. 3-22 through 3-27. A cross section of the problem is 

inserted in each figure to indicate which areas of the flow field the data repre- 

sent. 

Figure 3-22 presents vertical pressure profiles in the plane of symmetry 

for three downstream stations. The profiles illustrate the downward movement 

and dissipation of the shear layer. Figure 3-23 presents pressure profiles 

along the upper wall at constant values of X. The gradients are more severe 

due to the expansion of the free stream, and the 20 deg turn, from 105.8 PO to 

7.5 PO. The shear layer along the upper wall is shown to move outward and 

dissipate. 

Figures 3-24 through 3-26 present pressure contours at three axial 

stations. An outline of the nozzle has been superimposed for reference. 

Figure 3-24 shows the thin shear layer just downstream of the exit plane and 

the freestream pressure gradient due to the Prandtl-Meyer expansion. Figures 

3-25 and 3-26 illustrate how the external flow rolls upward and outward when 

not constrained by the nozzle walls. The dissipation and outward movement 

of the shear layer are also illustrated. Figure 3-27 presents the pressure 

contours on the upper wall, both inside and outside the nozzle. The nozzle 

sidewall with its 6 deg outward turn is apparent in this figure. The freestream 

Prandtl-Meyer expansion appears as a step function. There are no data to com- 

pare this complex three-dimensional solution, but again from physical insight, 

the results appear at least qualitatively correct. 
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Fig. 3-22 - Vertical Pressure Distribution at Several Axial Stations 
(Y. = .3048 m, PO = 47.87 N/m2) 

60 



60 

40 

20 

0 

x=4.6 

3.2 

, ,’ 
?!I 

,’ I I 
2 3 4 

Lateral Distance, Z/Z0 

Fig. 3-23 - Lateral Pressure Distribution at Several Axial Stations 
Go = .3048 m, P 

0 
= 47.87 N/in2) 

61 



Lateral Distance., Z/Z, 

Fig. 3-24 - Pressure Contours at X = 3.2 X0 

lx0 
= Y. = z, = . 3048 m, PO= 47.87 N/m2) 

62 



-1 

-2 

-3 

10 

100 

- 

I I I - 1 2 3 4 

Lateral Distance, Z/Z0 

Fig. 3-25 - Pressure Contours at X = 4.6 X0 ’ 
(X0 = Yo= z. = . 3048 m, PO = 47.87 N/m2) 

63 



3 

2 

B0 

> 1 
. 

: 
3 42 

2 0 

2 ..-I 42 
k 

sf 

-1 

-2 

-3- 
0 

\\\ I 
lb 

70 

1 2 3 4 
Lateral Distance, Z/ Z. 

Fig. 3-26 - Pressure Contours at X= 6.0 X0 
(X0 = Y. = Z. = .3048 m, PO = 47.87 N/m2) 

64 



160 r- 

3 50 
30 

y/ 10 

7.5 

7.5 

106 

p/p 0 

Lateral Distance, Z/Z, 

Fig. 3-27 - Pressure Contours on Upper Wall 

txO 
= Yo= Z. = .3048 m, PO = 47.87 N/m’) 

65 

- 



4. CONCLUDING REMARKS 

4.1 SUMMARY 

The GIM code described in the preceding sections is .in production status 

for two- and three-dimensional flows in arbitrary geometric domains. The 

capability of the production code is currently for laminar flows of nonreacting 

ideal gases. In addition, however, the GIM code is in a continuous development 

state with modifications and updating of capability. The following are among 

the advantages that GIM has over previous approaches. 

l Geometric flexibility of finite element 

0 Integral conservation laws 

l Knowledge base of finite difference 

l Boundary conditions via quasi-variational 

l Speed of finite difference 

l No matrix inversion for explicit calculation 

l Unlimited problem size 

l Only methodology which leads to completely 
general fluid mechanics code. 

There are classes of fluid dynamics problems which can be computed 

with much simpler techniques than GIM. However, the flexibility of the GIM 

algorithms make this code applicable to a wide ,variety of flows. Among the 

classes of problems for which GIM is especially well suited are the following: 

l Flows with subsonic t supersonic regions 

l Transient analyses 

l Problems requiring full Navier-Stokes equations 

l Complex Geometries 

l Location of three-dimensional shock surfaces. 
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The following summary gives some of the potential areas of fluid dy- 

namics in which the code could be applied, either in its current state or by 

further development. 

4.2 GAS DYNAMICS 

l The code can currently compute a variety of nozzle and exhaust 
plume flow fields for ideal gases ,in subsonic, transonic, and 
supersonic regimes. 

l Solid rocket motor ballistics computations can be made for 
gas-only flow. Addition of solid particle equations would pro- 
vide the capability of analyzing two phase transonic flow and 
internal gas dynamics for submerged nozzles. 

l Addition of chemistry packages to the GIM code will allow 
computation of reacting gas dynamics for all types of rocket 
motor and plume flow fields. 

l Use of the GIM code for analysis of gasdynamic laser devices 
could prove valuable for three-dimensional flows. This would 
require addition of gas kinetic calculations and a viscous mix- 
ing model. Routines for performing these calculations can be 
added from other present laser codes. 

l The expandable equation sets which can be utilized by the GIM 
code allows inclusion of real viscous terms such that laminar 
or turbulent boundary layer analyses can be made. 

l Inclusion of routines to compute laminar and/or turbulent 
viscosity coefficients would enable a variety of shear flows 
to be computed. Interaction of scramjet exhaust flow with 
freestream air can be treated, including a coupled treatment 
of the shear layer. Low-altitude rocket plume flows can be 
computed, including possible base recirculation with chemistry 
effects and mixing. 

4.3 AERODYNAMICS 

l The GIM code can currently compute subsonic, transonic and 
super sonic flows over arbitrary aerodynamic configurations. 
The code can be used for transonic airfoil design calculations 
although it cannot compete speed-wise with the existing “fast 
solvers.” Extensions of the code will enable it to be used for 
complete airplane flowfield studies. Aircraft engine flows and 
interactions with the freestream could be computed for scram- 
jet analyses, for example. Also, the potential exists for extend- 
ing this methodology to a hyperbolic marching technique in 
super sonic flow regions. 
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l Aerodynamic simulations of wind tunnel tests could be made. 
Effects of tunnel walls and boundary layers can be included 
in computing flow over arbitrary shaped models of aircraft 
configurations. Addition of an appropriate set of boundary 
conditions and a viscosity model will be required. 

l Missile aerodynamics presents another area of possible 
application of the GIM code. Flows over high angle of attack 
missiles require a three-dimensional analysis. Computation 
of flows with vortices may be possible by extension of the 
current code. Missile staging aerodynamics present another 
area of possible extension to the current GIM code. 
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